FHIR - Hands On Guide

Rik Smithies, NProgram Ltd.

NProgram FHIR hands on

Objectives

Beginners to be able to use FHIR and REST

Browse servers and understand FHIR URLs

Use a REST client to read and write data

Create and validate your own resources

Perhaps start coding (or try another day)

For those that already code with FHIR, jump to slide Coding FHIR (1)
Slides are in the form of exercises. Not all the answers are here ©

NProgram FHIR hands on

Other resources, for today or later

Lots of useful links on Confluence
https://confluence.hl7.org/display/FHIR

In particular the FHIR Chat group (chat.fhir.org aka "zulip")

NProgram FHIR hands on

https://confluence.hl7.org/display/FHIR

Let’s go

You can read the specification (and it’s worth doing)

But a good way to understand FHIR is to look at some FHIR servers
A list is here
https://confluence.hl7.org/display/FHIR/Public+Test+Servers

One that is good for learning the basics is:

http://nprogram.azurewebsites.net

NProgram FHIR hands on -

https://confluence.hl7.org/display/FHIR/Public+Test+Servers
http://nprogram.azurewebsites.net/

Browsing FHIR (1)

FHIR "RESTful" servers are structured like websites

There is a "root"
e.g. http://nprogram.azurewebsites.net

The FHIR "resources" are pages underneath the root, each with its own address
(URL).

e.g. http://nprogram.azurewebsites.net/Patient/1 is the address of the patient with
id 1.

Go there now and see.

NProgram FHIR hands on

http://nprogram.azurewebsites.net/
http://nprogram.azurewebsites.net/Patient/1

Servers...

These exercises use the public FHIR test servers (see link earlier).

They are provided free by various individuals and companies. There is no guarantee
that they are bug free, available, support all features or have all types of data.

But in general they are reliable and a great help when learning FHIR.
Be prepared to switch servers if need be.

Since data on servers can vary, you can adapt searches in these exercises to try to
find useful data.

)

Tip — if you can’t find a patient with name e.g. “Hobbs”, try just name “H”, or any
other letter. It works like a wild-card.

Browsing FHIR (2)

"Patient" is the name of a type of FHIR resource, and is also the page of the site
where those resources are stored.

Look at patients 2 and 3 and so on.

Back at the root page, there are links that work to show JSON instead of XML, and
that go to different types of resources (e.g. Organization), and that do searching.

Can you see how the website tells the server that you want JSON, and how you use
a URL to search?

Get patient 5 to display in XML - then manually change the URL to show JSON
Get the XML for all patients with name “Hobbs”

Browsing FHIR (3)

FHIR servers use HTTP to communicate (that is what REST is), just like any other
website, and that is why they can be browsed with a normal internet browser.

However since they are mainly intended for use by machines rather than people,
some FHIR servers are more human friendly than others.

e.g. at http://nprogram.azurewebsites.net, there is a page full of links. Because this
server is meant for demonstrations, it needs a human friendly front end.

Other servers such as https://hapi.fhir.org/baseR4 (a fully functional FHIR server)
have home pages, but some don’t.

NProgram FHIR hands on

https://hapi.fhir.org/baseR4

Browsing FHIR (4)

If the FHIR server recognises that it is being read with a browser (and so it is really a
person rather than a machine), some servers will show HTML, or XML or JSON

formatted as text (more on this later).

Others will send out pure XML but you will be prompted to save it as a file (and
then open it with an application). This works, and is what machines expect, but

isn't so easy to browse as a person.

When browsing a server, it is not always easy to know if it is running or not. How
might you be able to tell?

You can’t look for a particular patient id, it may not exist.

Browsing FHIR (5)

Something that works on all servers is the metadata page - which tells you what the
server supports.

http://nprogram.azurewebsites.net/metadata
https://server.fire.ly/metadata

NProgram FHIR hands on w«

http://nprogram.azurewebsites.net/metadata
https://server.fire.ly/metadata

FHIR Bundles

Look again at the XML for Patient/1
(http://nprogram.azurewebsites.net/Patient/1)

Now do a search for patients with name “Hobbs”. There is only patient, and it’s the
same one.

Note that like any website you can open different tabs or windows to make it easy
to compare things.

Compare the XML results of the search to the Patient obtained from “Patient/1”.

Search for name “Bradley", and compare the results again.

NProgram FHIR hands on

http://nprogram.azurewebsites.net/Patient/1

Links between resources (1)

Resources exist at FHIR end points such as
{name of site}/Patient/1
But resources can also link to each other.

e.g. the patient here http://nprogram.azurewebsites.net/Patient/1

references a generalPractitioner of Organization/1

You can see that Organization itself at
http://nprogram.azurewebsites.net/Organization/1

NProgram FHIR hands on -

http://nprogram.azurewebsites.net/Patient/1
http://nprogram.azurewebsites.net/Organization/1

Links between resources (2)

This is easier to see if the linked HTML version of the site

is used: e.g. http://nprogram.azurewebsites.net/html/Patient/1
and click the Organization link (near the end).

More complex resources such as DiagnosticReport will link to
several resources.

See
http:/nprogram.azurewebsites.net/html/DiagnosticReport/10

This has links to Patient id 1, Organization id 10 and Observations
1 to 17 (which provide the data on which the report is based).

NProgram FHIR hands on

http://nprogram.azurewebsites.net/html/Patient/1
http://nprogram.azurewebsites.net/html/DiagnosticReport/10

Links between resources (3)

Note though that there are times when you want to send a report in its
entirety. The previous example just has links, so the receiver would
need to fetch all the other observations one by one.

And this only works in a REST situation. If this same XML was
transferred as a message, the observations may not be accessible.

Resources can also be “contained” within others.
see http://nprogram.azurewebsites.net/html/DiagnosticReport/1

Note that the "<contained>" resources, after the <text>. These are in-
line resources.

NProgram FHIR hands on

http://nprogram.azurewebsites.net/html/DiagnosticReport/1

Links between resources (4)

The observations are referenced in the results at the end of the report, as with the
previous DiagnosticReport example.

But note how the references have a # to indicate that they are local to this resource
(local to the DiagnosticReport).

NProgram FHIR hands on

FHIR data formatting (1)

You may be wondering how the same resource can show in different ways
e.g. http://nprogram.azurewebsites.net/html/DiagnosticReport/1

shows formatting,

vs. http://nprogram.azurewebsites.net/DiagnosticReport/1

which is plain.

To explain, you need to understand that FHIR is intended for machine to
machine integration.

But since it is usually implemented as "REST" based (meaning http and
browser technology) it is easy to use a browser to explore things. This is
useful for introducing people to FHIR, and for testing (and debugging).

NProgram FHIR hands on

http://nprogram.azurewebsites.net/html/DiagnosticReport/1
http://nprogram.azurewebsites.net/DiagnosticReport/1

FHIR data formatting (2)

There are strict rules about how a FHIR server formats its data.

Specifically it must return data using an http "Content-Type" (MIME

type) of "application/fhir+xml" (or in the case of JSON
"application/fhir+json").

By contrast, normal websites use "text/html".

It is not easy to look directly at "application/xml+fhir" content with a
browse - your browser may offer to save the file to disk.

This works fine, but is inconvenient. To see this go to:

http://nprogram.azurewebsites.net/raw/DiagnosticReport/1

NProgram FHIR hands on

http://nprogram.azurewebsites.net/raw/DiagnosticReport/1

FHIR data formatting (3)

Web servers can detect the difference between another machine
asking for a data, and a person using a web browser. To make things
easy for humans, the server can detect this case and format the data so
that it is directly viewable in the browser.

This is fine and doesn’t break the specification, as long as a machine
always sees the proper format, and only humans get the pretty printed
version (or several different variations).

Knowing about Content-Types e.g. “application/fhir+json” becomes
important when writing data back to FHIR servers.

REST clients

FHIR servers can be read with a browser, but to really explore them you need to be
able to write data back.

Browsers are not good at this on their own.
For sending data you need a REST client tool.

REST client programs use the same HTTP language as a browser but just give you
more control.

Examples are Fiddler and Postman
Get Postman from here:

https://www.getpostman.com/

NProgram FHIR hands on

https://www.getpostman.com/

Using Postman to read (1)

Pick a server from the list of public FHIR servers (was on one of the links earlier :-).
Choose one that is not read only (so not http://nprogram.azurewebsites.net)

(The http://hapi.fhir.org/baseR4 server tends to be reliable.)
Task 1 is to use GET to read a patient by id.
But first you need to find a valid patient id.

To do this, get a list of all patients from: {server URL}/Patient

In Postman use the GET option - in the drop down list - and the Send button to read
from (for example) http://hapi.fhir.org/baseR4/Patient

NProgram FHIR hands on =

http://hapi.fhir.org/baseR4
http://hapi.fhir.org/baseR4/Patient

Using Postman to read (2)

In the response window (scroll down if need be) you should get a large set of
patients in JSON or XML (depends on the server), inside a "Bundl|e"

Search for a "resourceType": "Patient" within the Bundle JSON (or <Patient> for
XML).

Find the id for that Patient (normally right after the Patient tag), and see the
number (or string).

Use that id as a new URL and read that patient directly, again using Postman and
GET (tip - you can open another tab so you can keep the Bundle open).

You should see just that patient JSON/XML alone, and not in a Bundle.

Using Postman to read (3)

Task 2. Now search patients by name

You can use any name or part of a name (e.g. “Brooks”, or just “B”), until you get
some hits.

Task 3. Now get the same patient as in 1 by id but this time as XML, if you had JSON
before (or vice versa), by changing the URL.

Task 4. (harder) Now get the same patient as in 1 by id, again as the other format,
but this time using the original URL (i.e. don’t add the "?" part to the URL).

(clue, use the headers, and see https://www.hl7.org/fhir/http.html, content-type)

Using Postman to write (1)

Now you will write the patient from the last section back to a server, as a new
patient.

For this you need to use POST rather then GET (from the dropdown).

Use the Body "tab", (below the URL, looks like a menu), to actually contain the XML
or JSON that you want to send.

You will need to set the Body type to "raw" - it will probably say "none" initially.

Copy and paste the patient data you fetched earlier.

Using Postman to write (2)

You also need to set the Content-Type header to "application/fhir+xml" or
"application/fhir+json" using the Headers tab

Use key = "Content-Type" and value = "application/fhir+xml" (or "...+json")

Do the POST and check the Response. You should see an HTTP 201 code ("Created")
The Patient will have been assigned a new id.

(Some servers may not like that the Patient XML/JSON you sent had an id already -
if so, remove it and try again)

Using Postman to write (2)

Check the Content-Location of the response (in the Headers tab - make sure you are in the
lower set of tabs).

The part after "Patient/" is the new id that got assigned. (There may also be a history id,
but that can be ignored).

Also check the actual id inside the Patient resource XML/JSON that you just created and
was echoed back to you. It should match the Content-Location.

Now read this patient back again, by id. (Remember to change PUT back to GET). Again,
you can also use another Postman tab to make it easier.

Now edit that patient (change the name maybe), perhaps using notepad (cut and paste it
out of Postman), and save it back over the same resource - don’t create a new patient (i.e.
not POST)

Using Postman to write (4)

Now read that edited patient back, to check it worked, but as the other type JSON
vs XML. Note how your XML was converted to JSON, or vice versa, by the server on

the fly.

You have now covered reading, creating and updating resources using REST “verbs”.

NProgram FHIR hands on =

Create your own resource (1)

In this step you will create and validate your own resource XML data.

This requires an XML tool, such as a trial version of Oxygen XML, or XML Spy.
https://www.oxygenxml.com/xml editor/register.html

http://www.altova.com/simpledownloadl.html

Download and install the FHIR schemas
https://www.hl7.org/fhir/fhir-all-xsd.zip

NProgram FHIR hands on =

https://www.oxygenxml.com/xml_editor/register.html
http://www.altova.com/simpledownload1.html
https://www.hl7.org/fhir/fhir-all-xsd.zip

Create your own resource (2)

Now create an empty XML file, and start it off:
<?xml version="1.0" encoding="utf-8"7?>
<Patient xmIns="http://hl7.org/fhir"></Patient>

Validate it with the schema “fhir-all.xsd”. (In Oxygen, you can create a "validation
scenario”, browse to the xsd, then save and apply it to your file.)

Now add in some data. Use the schema to guide you, but look at
https://www.h!7.org/fhir/patient.html for details.

When it comes to POSTing, bear in mind that any references you use (e.g. an
Organization), must already exist on the server.

NProgram FHIR hands on =

https://www.hl7.org/fhir/patient.html

Create your own resource (3)

A next step is to create an Observation resource, and POST it so that it links to your
Patient using Observation.subject.

A more advanced task would be to create and POST a FHIR document.

See https://www.hl7.org/fhir/documents.html

Once you have written an Observation that links to your Patient, write 2 queries:

1. Query for the Patient, by name, but also retrieve the linked Observation at the
same time

2. Query for the Observation, but using the name of the Patient

NProgram FHIR hands on =

https://www.hl7.org/fhir/documents.html

Coding FHIR (1)

Those who can program are encouraged to write code that reads a
patient from a FHIR server.

FHIR has library code you can use to get you started quickly — though
you can also start from scratch using your environment’s HTTP

functions.
There are guides to using CH# and Java here:
C#: https://fire.ly/blog/make-your-first-fhir-client-within-one-hour/

Java: http://fhirblog.com/2014/07/31/fhir-connectathon-7-for-java-
dummies/

NProgram FHIR hands on =

https://fire.ly/blog/make-your-first-fhir-client-within-one-hour/
http://fhirblog.com/2014/07/31/fhir-connectathon-7-for-java-dummies/
http://fhirblog.com/2014/07/31/fhir-connectathon-7-for-java-dummies/

Coding FHIR (2)

For coding objectives, anything you achieve is a good result. But we can
use the FHIR Connectathon tracks, specifically the Patient one:

1. Register a new patient

2. Update a patient

3. Retrieve patient history

4. Search for a patient on name

More exercises

For those who don’t code, there is much to explore with the FHIR querying
features, using only a browser.

FHIR allows searches that use “and” and “or”.

Also you can “chain” searches, over different resources, for instance to
search for diagnostic reports for a named patient (even though the patient’s
name is not in the DiagnosticReport but in the separate Patient one).

Not all servers support all types of searches.
Try the “hapi ” or “firely” servers for full searching features.

See https://www.hl7.org/fhir/search.html

	Slide 0: FHIR - Hands On Guide Rik Smithies, NProgram Ltd.
	Slide 1: Objectives
	Slide 3: Other resources, for today or later
	Slide 4: Let’s go
	Slide 5: Browsing FHIR (1)
	Slide 6: Servers…
	Slide 7: Browsing FHIR (2)
	Slide 8: Browsing FHIR (3)
	Slide 9: Browsing FHIR (4)
	Slide 10: Browsing FHIR (5)
	Slide 11: FHIR Bundles
	Slide 12: Links between resources (1)
	Slide 13: Links between resources (2)
	Slide 14: Links between resources (3)
	Slide 15: Links between resources (4)
	Slide 16: FHIR data formatting (1)
	Slide 17: FHIR data formatting (2)
	Slide 18: FHIR data formatting (3)
	Slide 19: REST clients
	Slide 20: Using Postman to read (1)
	Slide 21: Using Postman to read (2)
	Slide 22: Using Postman to read (3)
	Slide 23: Using Postman to write (1)
	Slide 24: Using Postman to write (2)
	Slide 25: Using Postman to write (2)
	Slide 26: Using Postman to write (4)
	Slide 27: Create your own resource (1)
	Slide 28: Create your own resource (2)
	Slide 29: Create your own resource (3)
	Slide 30: Coding FHIR (1)
	Slide 31: Coding FHIR (2)
	Slide 32: More exercises

